Search results for "MSC 35"

showing 3 items of 3 documents

Derivation of a Homogenized Two-Temperature Model from the Heat Equation

2014

This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]

01 natural sciencesHomogenization (chemistry)Heat capacity010305 fluids & plasmasTwo temperatureMathematics - Analysis of PDEsThermal nonequilibrium models0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalingMSC 35K05 35B2776T05 (35Q79 76M50)35K05 35B27 76T05 (35Q79 76M50)MathematicsNumerical AnalysisHomogenizationPartial differential equationInfinite diffusion limitApplied MathematicsHeat equationMathematical analysis010101 applied mathematicsComputational MathematicsThermal non-equilibrium modelsModeling and SimulationVolume fractionHeat equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Can there be a general nonlinear PDE theory for existence of solutions ?

2010

Updated version of the 2004 paper arxiv:math/0407026; Contrary to widespread perception, there is ever since 1994 a unified, general type independent theory for the existence of solutions for very large classes of nonlinear systems of PDEs. This solution method is based on the Dedekind order completion of suitable spaces of piece-wise smooth functions on the Euclidean domains of definition of the respective PDEs. The method can also deal with associated initial and/or boundary value problems. The solutions obtained can be assimilated with usual measurable functions or even with Hausdorff continuous functions on the respective Euclidean domains. It is important to note that the use of the or…

[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]MSC 35[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA]QA Mathematics (General)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM][MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
researchProduct

On a nonlinear Schrödinger equation for nucleons in one space dimension

2021

We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.

numerical studySpace dimensionNonlinear Schrö010103 numerical & computational mathematicsNonlinear Schrödinger equations01 natural sciencesStability (probability)symbols.namesakeMathematics - Analysis of PDEs[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]dinger equationsNonlinear Schrödinger equationMathematicsMSC 35Q55 35C08 65M70Numerical AnalysisApplied Mathematics010102 general mathematicsTime evolutionground statesComputational MathematicsClassical mechanicsModeling and SimulationAtomic nucleussymbolsParticleNucleonAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct