Search results for "MSC 35"
showing 3 items of 3 documents
Derivation of a Homogenized Two-Temperature Model from the Heat Equation
2014
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]
Can there be a general nonlinear PDE theory for existence of solutions ?
2010
Updated version of the 2004 paper arxiv:math/0407026; Contrary to widespread perception, there is ever since 1994 a unified, general type independent theory for the existence of solutions for very large classes of nonlinear systems of PDEs. This solution method is based on the Dedekind order completion of suitable spaces of piece-wise smooth functions on the Euclidean domains of definition of the respective PDEs. The method can also deal with associated initial and/or boundary value problems. The solutions obtained can be assimilated with usual measurable functions or even with Hausdorff continuous functions on the respective Euclidean domains. It is important to note that the use of the or…
On a nonlinear Schrödinger equation for nucleons in one space dimension
2021
We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.